

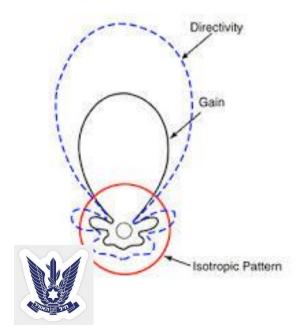
Dynamical RCS - Helicopters in pulsed Doppler radars image.

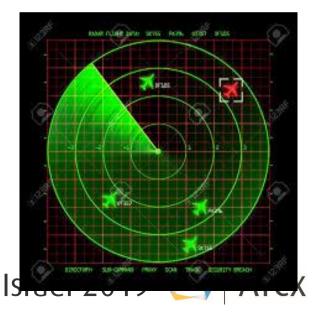
How does a pulsed Doppler radar work

What is a radar?

Direction detection

 Angle detection is based on the antenna directivity.



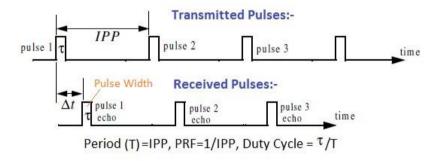


Range detection

• A Radar sends a pulse, after some time t, the radar receives a pulse.

$$R = \frac{ct}{2} [example: R = 75km, t = 0.5ms]$$

• After some time PRI, the radar sends another pulse.



• I will not talk about PRI, lets just assume $PRI \sim 0.5 ms$.

Radar signal power

- A radar transmit radiation in a specific direction.
- Free space propagation (radial decay).
- 3. The target scatters some of the radiation backwards.
- Free space propagation (radial decay).
- The radar receives the radiation.

$$P_r = P_t G \frac{1}{4\pi R^2} \frac{3}{\sigma} \frac{1}{4\pi R^2} \frac{5}{4\pi}$$

Radar signal phase

$$\phi = \phi_{tx} + 2\pi \cdot \frac{R}{\lambda} + \phi_{\sigma} + 2\pi \cdot \frac{R}{\lambda} + \phi_{Rx}$$

- 1. The Tx and Rx impose some unknown constant phase.
- 2. The free space propagation adds R/λ phase.
- 3. The backscattering (RCS) itself add some phase.

Moving target signal

Moving target radial distance:

$$R = R_0 + V_r t \to \phi_r = 2\pi \frac{R_0}{\lambda} + 2\pi \frac{V_r PRI}{\lambda}$$

Amplitude difference between consecutive pulse:

$$\frac{1}{R_0^4} - \frac{1}{(R_0 + V_r PRI)^4} \approx 4 \frac{V_r PRI}{R_0} \ll 1$$

Phase difference between consecutive pulse:

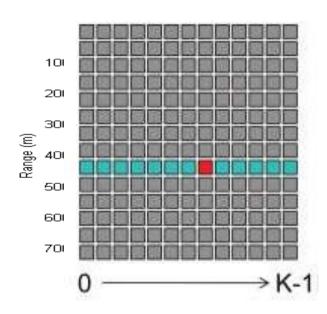
$$\Delta \phi_n \equiv \phi_n - \phi_1 = (n-1) \cdot 2\pi \cdot \frac{2V_r PRI}{\lambda}$$

Pulsed Doppler radar

- A radar sends N pulses at a constant PRI.
- Two time axes are defined: fast time – the time for the pulse return.
 Slow time – pulse number * PRI.
- Lets examine the FFT of the slow time:

$$FFT(e^{2\cdot\frac{2\pi i}{\lambda}\cdot v_r t_{slow}}) \sim \delta(f-f')$$

0 Doppler targets – trees, mountains, birds.



Regular target Doppler variation

- Consider a fighter jet, over the course of 32 pulses of PRI $625\mu s$ t=20ms
- Maneuver acceleration, usually up to $10g \rightarrow \delta v \sim 2m/s$
- Change in RCS: $\sigma \sim \frac{\partial \sigma}{\partial \theta} \delta \theta$ Change of flight angle $\delta \theta \sim \frac{\delta v}{v} \sim 0.01 [rad]$
- Overall, very small variations around $\exp\left(2i\cdot\frac{2\pi}{\lambda}v_rt\right)$ this leads to weak smear of the signal.

Helicopter Doppler variation

Consider a helicopter, over the course of 32 pulses of PRI 625μs

$$t = 20ms$$

- Velocity change negligible.
- 4 blade rotor, with RPM of 380:

$$N_{rounds} = t \cdot rpm \cdot 4 \approx 0.5$$

Blade edge velocity:

$$2\pi * rpm * L \sim 360m/s$$

• Blade edge translation:

$$\delta r = v \cdot t = 7.2m$$

What would the range-Doppler signal of a helicopter look like?

Dynamical helicopter RCS

• For incident field E_h

$$E_{hh} \propto \sqrt{\sigma_{hh}} e^{i\phi_\sigma} E_h e^{2i\cdot\frac{2\pi}{\lambda}\cdot v_r t}$$
 (lets assume $v_r=0$) definition $\sqrt{\sigma}' \equiv \sqrt{\sigma_{hh}} e^{i\phi_\sigma}$

Range Doppler signal:

$$FFT_{slow}(E_{hh}) \to FFT_{slow}(\sqrt{\sigma}')$$
time

• To get $\sqrt{\sigma}'(t)$ we can use Feko by calculating $\sqrt{\sigma}'(\theta)$ and transfer $\theta \to t$ using the helicopter's RPM.

How is RCS calculated

Method of Momenths

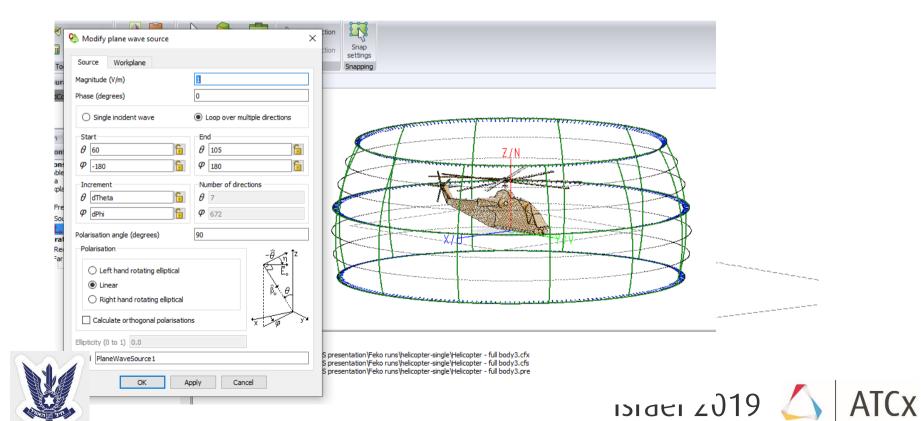
- Incident plane wave
- Metallic body (helicopter)
- Wavelength dependent mesh of the body
- Maxwell equations

$$E = A \cdot j$$

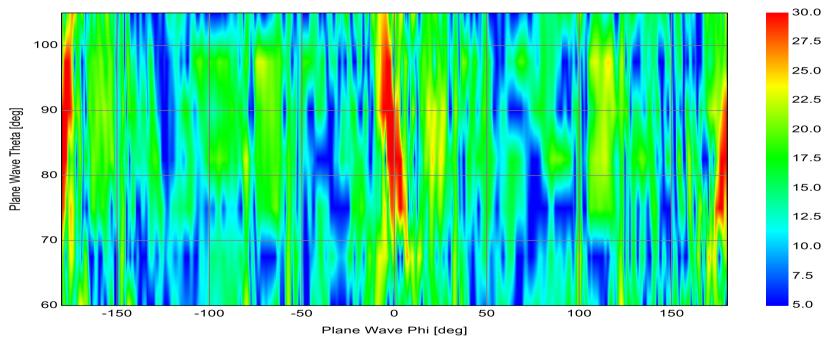
 E – the incident field, j – the currents on the mesh, A – the interaction matrix. This equation has the necessary components, but it is j we are after, and not E .

•
$$j = A^{-1}E$$

Helicopter – Feko model



Helicopter RCS

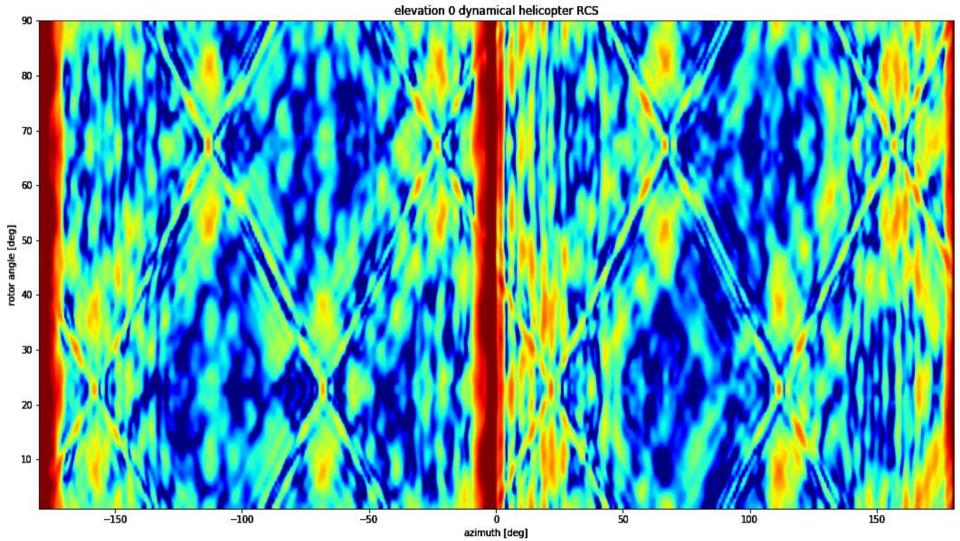


Phi RCS (Frequency = 200 MHz) - Helicopter - full body?

Dynamical RCS

- For a helicopter of constant RPM: $\theta = 2\pi * RPM * t$
- How can we calculate all θ ? -parameter sweep
 - + for loop.

Dynamic helicopter RCS



Some fft mathematics

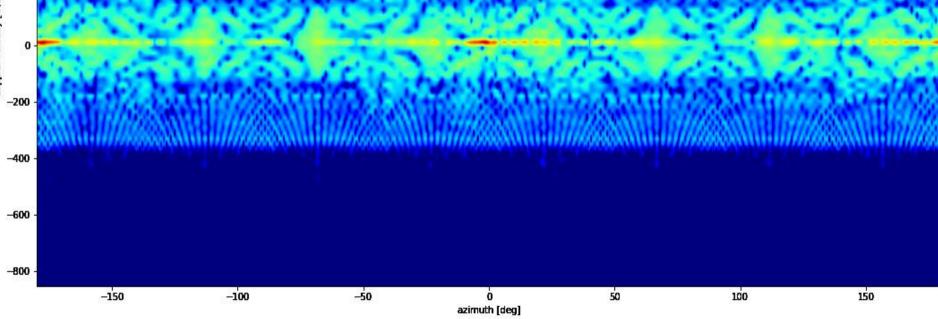
•
$$T = \frac{1}{4*RPM} = 39.5ms \rightarrow t = \frac{\theta}{90} \cdot T \rightarrow \theta(t) = \frac{t}{T} \cdot 90^{\circ}$$

•
$$\exp\left(2i \cdot \frac{2\pi}{\lambda} v_r t\right) \rightarrow \text{"f"} = \frac{2}{\lambda} v_r$$

•
$$|f_{\text{max}}| = \frac{1}{2\delta t} = \frac{1}{2(\frac{\delta\theta}{90})T} \rightarrow v_{\text{max}} = \frac{\lambda}{4(\frac{\delta\theta}{90})T} \approx 850 \text{ m/s}$$

• For the example radar $t = t_0 + n * PRI$, n = 1, ..., 32 $v_{max} = \frac{\lambda}{4PRI} \approx 600 \, m/s$

$$\delta v = \frac{2 * v_{Max}}{32} \approx 40 m/s$$



Feko is a simulation software; Reference to a measurement

- Doppler spectrum analysis of helicopter for an active seeker head by S. Ahmad and K. A. Ahmad.
- Completely different methods, very similar results. [Feko works]

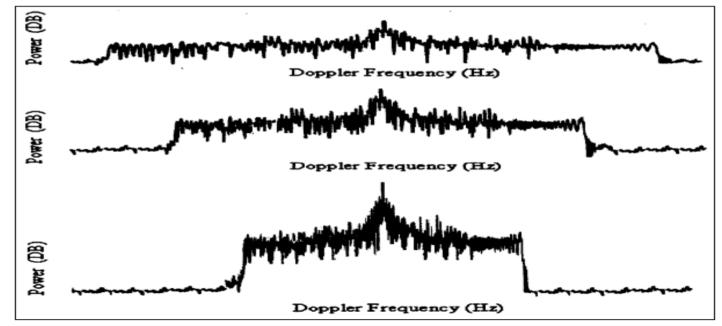
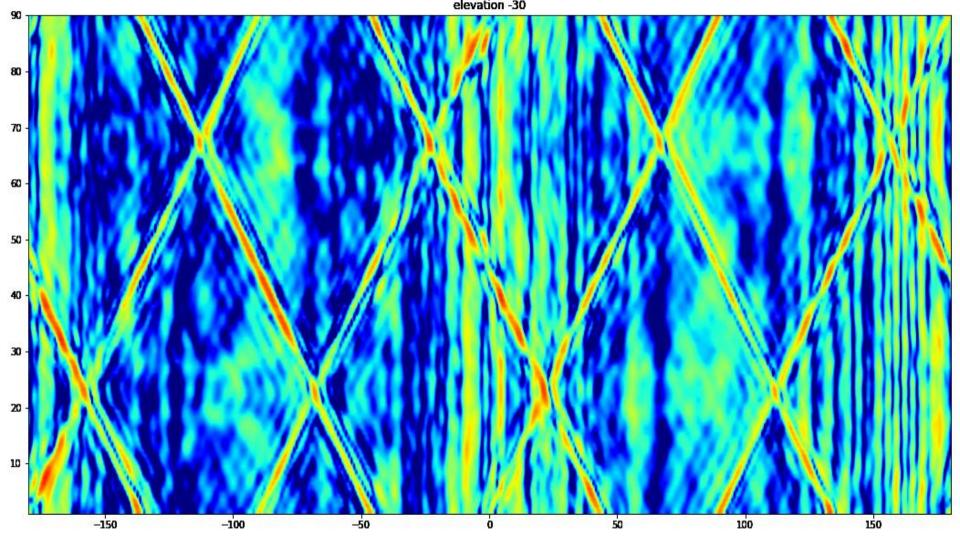
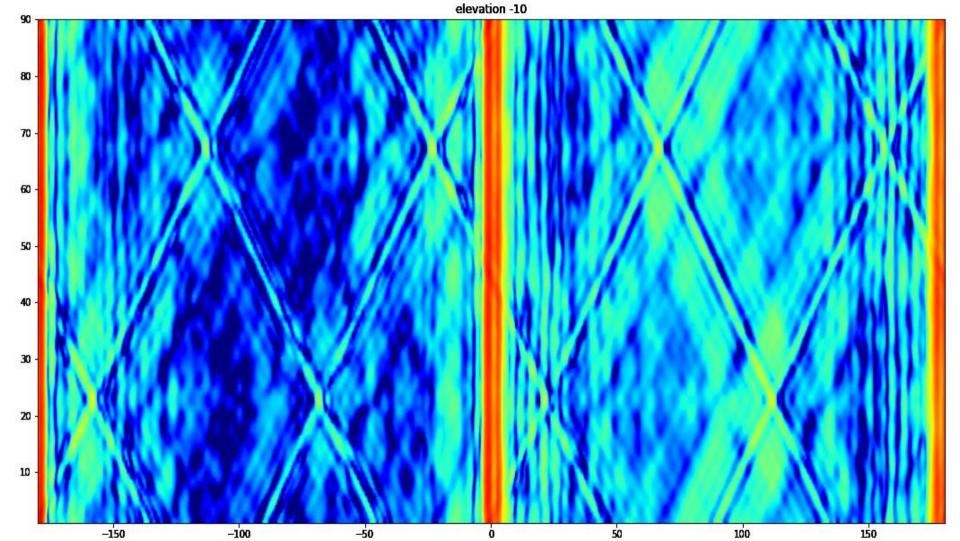
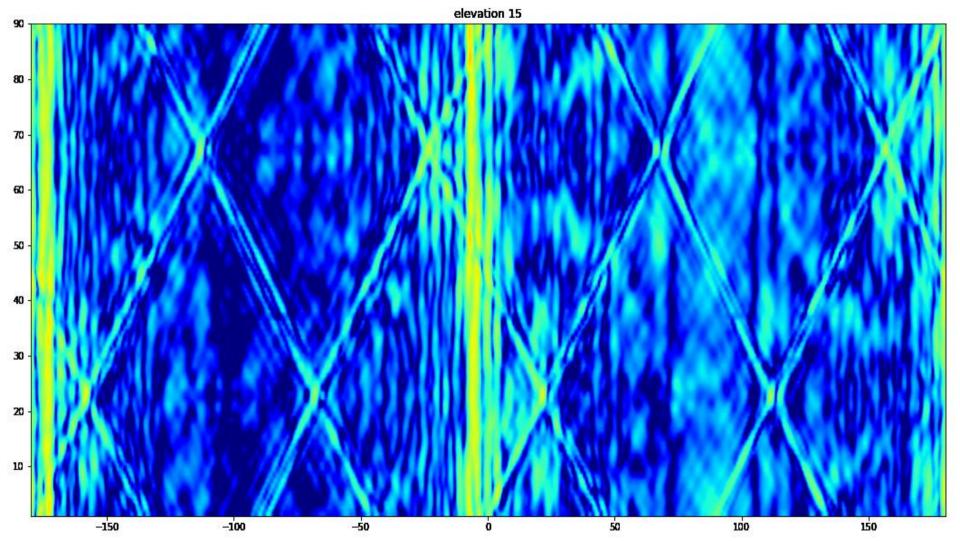


Fig.11. The pulse Doppler spectrum of a helicopter as the angle θ increases







A useful trick

- We had to calculate $\sigma(\theta)$.
- The RCS is calculated by inverting the interaction matrix. The currents produce the scattered field.
- Lets looks at a partitioned interaction matrix:

$$\begin{pmatrix} body & body \to rotor \\ rotor \to body & rotor \end{pmatrix} \cdot \begin{pmatrix} j_{body} \\ j_{rotor} \end{pmatrix} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$

• Some of the matrix is θ independent!

Numerical Green Function

- We can store the "body" but we actually need "body"-1.
- If "body" holds much more elements than "rotor", the complexity decreases.
- Body can be calculated on its own using symmetries.
- Possible uses: helicopter antenna placement multiple configuration platform

Questions?

