Altair Flux™

Electromagnetic, Electric, and Thermal Analysis

Infographic: The Impact of Multiphysics Optimization on e-Motor Development

Simulation helps you validate at the end of a product design cycle, but deployed early and throughout a development process, it can actually allow you to explore more potential solutions, collaborate more effectively and optimize the design for cost, performance, weight, and other important criteria. This infographic provides a framework for developing and implementing your own simulation-driven process to help you produce more efficient e-motors and shorten development times. 

Brochures, Images

Electric Motors Multidisciplinary Optimization Platform

The design of a high-performance e-Motor is a complex undertaking. Engineers have conflicting constraints to consider including efficiency, temperature, weight, size and cost. To explore more ideas, better understand their designs and improve performance, Altair HyperWorks™ has a workflow to guide motor designers through an efficient process of Simulation-Driven Design. This analysis and optimization solution supports multi-disciplinary teamwork and reduces design times.

Use Cases

Taking into Account Magnet Demagnetization During Solving Process in Flux

Taking magnet demagnetization phenomena into account during solving process offers more accuracy on typical quantities such as motor torque or electromotive force and new analysis like the evolution of the remanent flux density.

Use Cases, Videos

Flux Dedicated e-Motor Environment with Automated Tests

Discover the new Flux e-Machine Toolbox (FeMT) dedicated environment with automated tests.

Use Cases, Videos

The Multi Physics Optimization of an e-Motor Rotor

Vincent Leconte, Director of Business Development - EM Solutions at Altair presents at the 2019 UK e-Mobility Seminar. Optimization of e-Motors, Case Studies: Jaguar Land Rover & Porsche. Cooling Simulation of the eMotors.

Presentations, Videos

Meet your Energy Efficiency Goals in your Electrification Projects with Simulation

Electrification is one of the main means of creating a low-carbon economy, allowing to use renewable energies and energy efficient technologies. Electric power enters many industries and also impacts our everyday lives, especially with the electric mobility. The use of power electronics and control systems allows offering better reliability, safety and low maintenance costs, and also brings additional innovative functions. Learn how Altair simulation and optimization tools can help designing highly efficient electric machines, as well as advanced control strategies to help you build innovative and energy efficient electric solutions.

ATC Presentations

An Efficient and Automated Design Strategy for Multi-physics E-Motor Development

This presentation introduces an application of a unique, highly automatic, multi-physics design strategy for E-motors, based on a current program at Mercedes-AMG GmbH. The strategy considers essential development requirements including electromagnetics and thermal requirements, NVH, stress and durability. It accommodates for DOE, multi-objective optimization and design exploration methods to be used to explore and find feasible motor designs. The presentation will show how the strategy adds efficiency to the E-motor development process and how it impacts the total costs of development.

ATC Presentations

Using Machine Learning and Optimization to Develop e-Motor

The Altair Multiphysics platform provides a broad portfolio of solvers and tools to help engineers develop e-motor design requirements by using simulation and optimization methods. This presentation provides examples, using Altair Machine Learning and optimization solutions, of the e-motor requirements by leveraging in data available, which is key for e-motor designers to reduce time-to-market.

ATC Presentations

Modeling the Thermal Runaway Behavior of Li-ion Batteries upon Mechanical Abused Loading

This presentation demonstrates Altair’s capability of simulating the behavior of a mechanically damaged battery from a cell to a pack integrated in a vehicle, based on collaborative research previously conducted with MIT. An innovative approach of applying electromagnetics loss to predict rising temperature due to short circuit effects during an impact is discussed, along with the development of a software tool, Battery Design, which enables OEMs and suppliers to design battery applications using multiphysics optimization, including mechanical-electrical-electrochemical-thermal behaviors.

ATC Presentations

Upcoming New Wireless Solutions and Applications, including 5G

The rollout of 5G technology is going to be a boon across many industries globally, with the expansion of IoT and connected devices, and where lower latencies are opening the door to time-critical areas like autonomous vehicles, industrial IoT and healthcare. In this presentation we will share new applications and use cases from different major verticals, showing how organizations are designing innovative products using Altair electromagnetic simulation solutions related to antennas, wave propagation modelling, radio network planning and EMC applications. We will also talk about new solutions we have recently launched, and about what is available and coming in 5G.

ATC Presentations

Conceptual Design and optimization of an Electric Motor

Presentation by Koby Ingram, Gevasol BV. Conceptual Design and optimization of an Electric Motor using Altair Flux and HyperStudy. The customized electric machine with high level demands and efficiency is a challenging topic requiring top level of expertise and best in class simulation tools. This work focuses on the usage of Flux and Hyperstudy as tools for bettering the design and design process of e-motors. Presentation at the ATCx in Israel, Netanya on October 30, 2019.

ATC Presentations

NVH Refinement for Electric Vehicles

Replacement of traditional combustion engines with an electric powertrain, bring electro-mechanical induced tonal and high-frequency whine noise. In addition, tire and aerodynamic turbulent noise become more prominent in the absence of a standard Internal Combustion Engine. Also, the perceived sound quality imposes a new set of challenges. This leads to completely new methods of NVH refinement, keeping the decades of research aside. As it is important to address these issues at the design and development stage, adopting the new simulation techniques to manage future NVH challenges in e-Mobility is of the prime challenge to the traditional NVH engineers. In this webinar, we shall discuss some of those key NVH challenges specific to electric vehicles and appropriate simulation processes to develop countermeasures.

Webinars

Traction Motors Design & Multidisciplinary Optimization

Traction Motor play key role in the electric vehicle/hybrid electric vehicle (EV/HEV) development process. The design of a High-Performance e-Motor is a complex undertaking. Engineers have conflicting constraints to consider including efficiency, temperature, weight, size, and cost. To explore more ideas, better understand their designs and improve performance, Altair HyperWorks™ has a workflow to guide motor designers through an efficient process of Simulation-Driven Design. This analysis and optimization solution supports multi-disciplinary teamwork and reduces design times.

Webinars

Multi-body Enhancements & Customer Successes

Presenter: Rajiv Rampalli, Sr VP in HyperWorks Core Development team, Altair

Altair’s products for multi-body system simulation (MBS) – MotionView, MotionSolve, and Inspire Motion – form a key component of multi-disciplinary system simulations. In this presentation, we will look back on several achievements this year, in the form of customer successes as well as recent enhancements to these products which significantly extend the depth and breadth of capabilities. Some of these application examples also involve connections from MBS to other Altair technology or to 3rd-party technology such as to Altair OptiStruct (for flexible bodies and light-weighting) and Altair Activate (for hydraulics) and EDEM (for discrete element modeling of bulk materials).

ATC Presentations, Videos

Multi-Fidelity E-Motor Drive Solution

Presenters: Ulrich Marl, Key Account Manager for Electric Vehicle Motor-Feedback Systems, Lenord+Bauer & Andy Dyer, MBD Sr Technical Specialist, Altair

This presentation shows a modeling process to quantify the position/speed sensor (e.g, encoder) effects on an e-motor, and corresponding control system for a concept traction motor similar to the Nissan Leaf. The integrated solution of the e-drive is carried in Altair Activate as a system builder, using other Altair solutions e-motor solutions in FluxMotor and Flux to generate data for the e-motor itself, as well as the optimal current values for the Field-Oriented Contoller. The inverter is driven with efficient space vector pulse width modulation. The integrated solution also supports different levels of modeling fidelity for the system components, for example for the e-motor where either direct co-simulation with Flux for detailed finite element analysis or a reduced order model (ROM) using look-up tables. In this way, sensor design parameters can be evaluated within an accurate system of the e-drive to improve performance and efficiency.

ATC Presentations, Videos

The Wahoo KICKR Bike: Designing a Ride Experience that Blurs the Line Between Virtual and Reality

As more products enter the market that simulate real world experiences, consumers' expectations are rapidly increasing. To meet these rising expectations the hardware and controls required are becoming more complex while maintaining time to market and cost. To achieve this, efficiencies are required in the control’s development and hardware tools chains. Wahoo Fitness and Altair collaborated to create the new Wahoo KICKR Bike utilizing a Model-Based Design approach to controls development combined with a simulation driven design process to meet the high expectations of the bike trainer community.

ATC Presentations

Experience the Sound of Your Future EV Before it is Built

Achieving the targeted brand image in a short development cycle time with minimal or zero prototypes is a major challenge faced by EV companies. To overcome this challenge, Altair, HBK and Romax have jointly developed a simulation driven process coupled with capabilities to virtually experience the noise and vibration characteristics, giving engineers a way to obtain real time performance feedbacks as the vehicle is being developed. This joint presentation on the proposed NVH development process covers a wide range of topics, including benchmarking, target setting, full vehicle and motor gearbox simulation loadcases, troubleshooting, optimization and stochastic analysis, and playback of simulation results for subjective evaluations, with a number of new technologies representing the global best practice in sound and vibration design and development. Join us to explore ways to control the sound and vibration characteristics of the vehicle, achieve the right sound, and avoid common NVH pitfalls, while accelerating time to market utilizing and experiencing virtual NVH prototypes.

ATC Presentations

eBook: Learn Electromagnetic Simulation with Altair Feko

Altair Feko is an environment to solve electromagnetic problems. This book takes the reader through the basics of broad spectrum of EM problems, including antennas, the placement of antennas on electrically large structures, microstrip circuits, RF components, the calculation of scattering as well as the investigation of electromagnetic compatibility (EMC).

eBooks

eBook: Flux2D Simulation of the Rotor Bar Breakage

This book is a step by step introduction in the building of finite element models using Altair Flux Student Edition 2018.1.2 for a squirrel cage bar breakage process and broken bar faults in an induction motor.

eBooks, Training Materials

Advanced Hystheresis Simulation Using Preisach Model - Altair Flux

Newly introduced in Altair Flux, the hysteresis modeling based on Preisach's model enables a better evaluation of iron losses and remanence effects. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Videos

Taking Demagnetization Into Account - Altair Flux

Demagnetization simulation: considering the magnet demagnetization phenomena during the solving process simulation enables very accurate predict the device performance, and measure the impact on EMF and torque for instance. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Videos

Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT

Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Videos

Conductor Impedance and Near Field Simulation using Altair Flux

Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux PEEC is a dedicated environment to electrical interconnection modeling for EMC and power electronics applications, from small wire bonds and PCB tracks, up to busbars, power modules and large distribution switchboards. Flux PEEC evaluates parasitic inductances and capacitances, analyse the current distributions and resonances, including skin, proximity and capacitive effects and computation of Joule losses, radiated magnetic fields and Laplace forces.

Presentations

New Features of Altair Flux Electromagnetic and Thermal Simulations

Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Videos

Model Export to Altair Flux

Once a designers has defined its motor concept in Altair FluxMotor and evaluated its global performance, he can perform more detailed analysis, exporting his machine in Altair Flux and working with high-fidelity models. Significantly, Flux enables more accurate prediction of motor behavior, with advanced losses computation, considering eccentricities, magnet demagnetization, effects of manufacturing process, and couple to Altair HyperWorks for multiphysics analysis.

Videos

Magneto Vibro Acoustic Design of PWM Fed Induction Machines

Induction Motors (IM) are widely used in various industries. To ensure their speed control, IM will be supplied with pulse width modulation (PWM). This kind of supply, can impact efficiency of the motor and degrade its vibro-acoustic behavior, generating noise nuisance. To tackle these technical challenges and ensure best-in class acoustic comfort for users, it is necessary to design a quiet e-motors at the early stage of design. The first aim of this paper is to show a new method to reduce noise and vibration due to PWM supply of induction machine. The proposed approach allows the passive reduction of air-gap flux density harmonics in an induction machine. The second interest, is to show a new method to analyze the vibro-acoustic behavior of a PWM-fed IM. The method is fully finite element (FE) computation. Finally, the third interest of this article, is to compare noise and vibration results between the proposed FE method, magneto-vibro-acoustic coupling and measurements. Good agreement between measurements and computation will be shown.

Technical Papers

Altair Flux New Feature Overview

View a high level overview of the new features available within Altair Flux 2019.

New Features

Getting Started with Altair Flux

This video helps you to get started using Altair Flux™ quickly. Flux Supervisor is the central part for accessing Flux. You can adjust basic settings of the software, such as the working directory and memory settings, launch new or existing projects, open example cases, directly access the documentation or run batch files.

Getting Started

Electric Motor Design Analysis Tutorial

Video shows how to set up a simulation of a brushless permanent magnet motor to do a cogging torque analysis using Altair Flux™. Model is created using Flux dedicated Motor Overlay.

Tutorials

Altair Flux Actuator Design Tutorial

Complete set up, analysis, and post-processing of an electromagnetic actuator in Altair Flux™ 3D.

Tutorials

Altair Flux User Environment and Workflow

This brief video explains the general philosophy of how to use Altair Flux™. The video also shows how commands for geometry, mesh generation and general model setup can be accessed.

Tutorials

The Multiphysics Optimization Platform for e-Motor Innovation

Altair develops multiphysics simulation technologies that allow you to accelerate next generation mobility solutions development. From smart control design to powertrain electrification and vehicle architecture studies, our solutions enable optimization throughout the development cycle, all backed up by a global team of engineering consultants.

Videos

A New & Revolutionary Way to Collect Energy from Wind

David Yáñez presents at the UK ATC 2019. Vortex Bladeless is a Spanish start-up that is developing a new wind energy technology. Its key characteristic is the minimization of mechanical elements that can be worn by friction. In the first stage, its application area seems to be distributed energy. For its development, CFD tools are being of vital importance. Both the fluid-structure interaction and the behavior of the magnetic fields in the alternator are being studied mainly with this type of tool. The results obtained are being contrasted with experimental results obtained both in wind tunnel and in real application environments.

A general vision of the technology, the strategies used for the integration of the different physical phenomena involved and the path traveled for its development will be exposed.

ATC Presentations

E-Motor Weight and Cost Reduction Webinar

Nowadays, it is more and more challenging to design an e-motor. Many constraints have to be fulfilled, including maximizing power using minimal size, considering thermal constraints, material and production costs, and of course reducing weight. In order to meet these constraints, a multifaceted solution is needed, leveraging physics tools in combination with optimization methods. This webinar will introduce Altair's e-motor design and optimization solutions in a step by step process. We will discuss pre-design, magnetic computation and thermal analysis and show how optimization methods can help to optimize weight and cost at each step of the process (especially the weight of magnets) . We’ll demonstrate how Design Of Experiments (DOEs) allows designers to run different types of optimization very quickly, which enables informed decisions at different stage of the design cycle.

Webinars

Improving Electric Vehicle Range with Advanced Losses Computation Considering PWM Across a Full Duty Cycle

Introducing electric traction in automotive brings new challenges for the design of electric machines. Nowadays designers have to consider increasing constraints like efficiency, temperature, weight, compactness, cost but also stricter regulations, while reducing time to market. Fortunatly, Altair proposes disruptive methodologies to make relevant choices in the early stage of the design, based on numerical simulation and optimization techniques. Once the machine has been selected and designed in Altair FluxTM this webinar covers how an electric motor design's performance is evaluated and maximized considering its global efficiency along the whole driving cycle. The next design challenge is to get an accurate estimation of the losses, which becomes more and more strategic in the design process in order to accelerated speed to market with balanced design and confidence. This estimation is also a key issue of thermal design. Therefore, the study of losses (in particular non-conventional losses) is crucial. Two methods are proposed to take the current wave form into account: by using an equivalent circuit model in Altair ActivateTM system modelling software, or by representing the PWM in Flux circuit context.

Webinars

E-motor Design using Multiphysics Optimization

Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.

The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.

Customer Stories, Technical Papers

Coupled Electro-Magnetic and Acoustic Simulation of an In-Wheel Electric Motor

At Elaphe, the engineers have been facing the NVH challenges from the very beginning. The topology of this electric motor, which on the one hand enables the team to use the otherwise empty space inside the wheel, can on the other hand, result in some new and unexplored NVH challenges. The experience over the years has proven that NVH is a bottleneck in the design cycle of Elaphe's motors and this was the main motivation for a more automated and more user-friendly NVH simulation workflow. Within the NVH, noise radiation was the area Elaphe was most interested in.

Webinars

Design the Future e-Mobility

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Analysis of Static Eccentricity Faults in Double Stator Single Rotor Axial Flux Surface-mounted Permanent Magnet Motors

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Shielding Benchmark: Static Shielding and Eddy Current Shielding

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Flux & Flux Motor: A Preview from the Inside

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Switched Reluctance Motor (SRM) Multiphysics Simulation

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Slotless-Halbach Lightweight Electric Machines and Unconventional Multi Layer Winding

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Using Workflow Automation Tools for the Multi-physics Optimization of Traction Motors

This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

ATC Presentations

Schneider Electric

An Altair customer for many years, Schneider Electric at first used only Altair Flux; now the company has extended their usage to several more software products in the Altair HyperWorks suite, including solutions such as Activate, MotionSolve, OptiStruct, and others to apply co-simulation in their development processes. Schneider feels their collaboration with Altair is more like a partnership than the standard supplier-OEM relationship.

Customer Stories

Multi-Physics Design and Optimization of a Complex Radar System

Today, most products are complex mechatronic combinations of advanced technologies, mixing electrical parts with controllers and embedded software. To efficiently manage innovative products, organizations are turning to a Model-Based Development approach for concept studies, control design, multi-domain system simulation and optimization. To meet this demand, Altair’s simulation and optimization suite aims to transform design and decision-making throughout product lifecycles with their multi-disciplinary software tools and consultancy services.

Technical Papers

Gulplug

French startup Gulplug, located in Grenoble, France, has set out to revolutionize plug and charging technology used in today's electric and hybrid vehicles. To create new products and to drive innovation in the market, Gulplug is using Altair Flux™ and the Altair startup program. Flux helped Gulplug to model and create an innovative, clean, automatically self-plugging, magnetic based charging solution for electric vehicles.

Customer Stories, Customer Testimonials

Improving E-Motor Acoustics with Seamless Multiphysics Simulation

Discover Altair SimLab's automated workflow for coupled electromagnetic and vibration analysis. SimLab uses Altair Flux for electromagnetic analysis and Altair OptiStruct for vibro-acoustic simulation.

Webinars

Be the first to know

Subscribe to our newsletter to learn about product training, news, events, and more!