Altair OptiStruct™

Optimization-enabled Structural Analysis

Tips & Tricks: OptiStruct - Equivalent Plastic Strain Response for Optimization

Equivalent plastic strain can be used as an internal response when a nonlinear response optimization is run using the equivalent static load method. This is made possible through the use of an approximated correlation between linear strain and plastic strain, which are calculated in the inner and outer loops respectively, of the ESL method.

Tips & Tricks

Tips & Tricks: OptiStruct - Contact Pressure, Force as a Response for Optimization

Contact Pressure can be used as an internal response when a model with contact and optimization is run. Contact pressure response is activated using RTYPE=CNTP option. The PTYPE should be set to CONTACT and the corresponding CONTACT Bulk Data ID(s) can be referenced on the ATTi field.

Tips & Tricks

Tips & Tricks: OptiStruct - Failure Response for Topology Optimization

Factor of Safety (FOS) and margin of safety (MOS) optimization responses are now available for Topology optimization. It is calculated using NORM approach on design domain. All optimization types are now supported including Topology.

Tips & Tricks

Tips & Tricks: OptiStruct - Neuber Optimization Response in Nonlinear Subcase

Neuber Stress and Neuber Strain sensitivities are supported for optimization in small displacement NLSTAT. It was already supported for optimization in FASTCONT analysis. It is supported only for small displacement analysis, it is not supported for large displacement. Once Neuber response is defined, the material will be treated as linear and MATS1 props are used only for Neuber correction. It is supported for solids as well as shells. It is supported for all optimization types except topology & freesize optimization.

Tips & Tricks

Tips & Tricks: OptiStruct - Manufacturing Constraints for Composite Optimization

Certain manufacturing constraints are important when designing composite laminates, like balancing of plies, thickness of plies, etc. ln OptiStruct, manufacturing constraints can be defined during free size optimization, shuffling optimization for a better manufacturability and desired stacking sequence. The following are some of the manufacturing constraints which can be used depending on the requirement.

Tips & Tricks

Guerrilla Gravity

For pioneering a new material application and technology without a road map, Guerrilla Gravity used Altair OptiStruct in the early design design phase. The result was the development of lightweight, high-performance bikes, that are 300% more impact resistant than other frames on the market that use traditional carbon fiber materials, at significant cost savings and shortened timelines.

Customer Stories

Altair HyperWorks Defense Brochure

HyperWorks is a wide-ranging set of engineering analysis and optimization tools that is used throughout every major industry. See how HyperWorks is used for Defense in this brochure.


E-motor Design using Multiphysics Optimization

Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.

The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.

Customer Stories, Technical Papers

5 ways to optimize your design

Gauge optimization, size and shape, and shell optimization, can be used to improve an existing design without altering its overall architecture. 3D topology optimization can be used when a significant re-design is desired because it identifies the optimal load paths of a structure and recommend material reduction. The material layout produced in the 3D topology is then interpreted into a concept design which is dimensioned and fine-tuned with the gauge, size, and shape approaches resulting in a final structure. Do you want to learn how to execute all the techniques mentioned? Step-by-step tutorials are available now for download!

Tips & Tricks

A Unique Car Concept for Urban Space

Udi Meridor, Chief Innovation Officer at Israeli startup, City Transformer, talks about the thinking behind the design of this revolutionary design for urban transport. They have decided to rethink the future of the city car and create a cleaner world.

Customer Stories, Videos


Czech company Duratec Ltd. develops handmade bike frames using both aluminium and composite materials. For a recent project at Duratec presenting the latest approach in development of carbon fiber optimization of the bike frame, Altair HyperWorks was used for model creation in Altair HyperMesh, optimized via the Altair OptiStruct code and evaluated in Altair HyperView in the development and optimization of a lightweight composite racing bike frame.

Customer Stories


Israeli motorsport company Griiip has designed a new, fast and professional race car that combines efficiency in racing with a competitive purchase price and low running costs, to make it more affordable. By harnessing the power of data, Griiip has created the first smart connected race car – the G1 – and with it, an entirely new racing series. Accessing the software via Altair's new Startup Program, Griiip engineers employ several products from the Altair HyperWorks™ suite, among these Altair Radioss™ for crash simulation, Altair OptiStruct™ for structural optimization, general FE analysis as well as Altair HyperMesh™ and Altair HyperView™ for pre- and post-processing tasks in the development of race cars.

Customer Stories

Flat Panel Post-Buckling Analysis with Implicit Method using OptiStruct

Many commercial aircraft are designed so that fuselage skins can elastically buckle below limit load and continue to operate safely and efficiently. This design regime makes for a very lightweight semi-monocoque structure compared to a non-buckling design. Therefore, predicting the local buckling, post-buckling behavior, and failures are critical to design and optimization of this kind of structure. The local panels buckle in a combination of compression and shear. Excess compression is redistributed to surrounding axial members (frames and stringers) and shear is continued to be carried by the buckled panels via tension parallel to the buckle waves. The compression redistribution and diagonal tension put special strength considerations on all involved structural components. This post-buckling behavior and the analysis method are both called intermediate diagonal tension (IDT).

Technical Papers

Improving E-Motor Acoustics with Seamless Multiphysics Simulation

Discover Altair SimLab's automated workflow for coupled electromagnetic and vibration analysis. SimLab uses Altair Flux for electromagnetic analysis and Altair OptiStruct for vibro-acoustic simulation.


HyperWorks for Aerospace Applications v2017

The HyperWorks for Aerospace self-paced course covers the critical processes used in the creation of FEA models in the Aerospace industry. This course contains 12 modules covering aspects from model setup to post processing. Each module contains background information on the tools used and practical exercises with recorded demonstrations to help you get familiar with the tools and processes. Note: This course requires a login to Connect to view.


Introduction to OptiStruct for Structural Optimization

The purpose of this self paced course is to cover the basics of OptiStruct Optimization. The course contains modules introducing the basic optimization types and giving an over of each. Many exercises are available in the modules that use the See It, Try It methodology. See It allows you to watch a video demonstration of the exercise covered in the section, while Try It gives you a pdf and model to try it in the software on your own. Note: This course requires a login to Connect to view.


Introduction to OptiStruct for Linear Analysis

The purpose of this self paced course is to cover the basic topics for OptiStruct Linear Analysis. The Setup sections will use the See It, Try It, Do It methodology to cover the concepts. See It allows you to watch a video demonstration of the exercise covered in the section. Note: This course requires a login to Connect to view.


Altair HyperWorks Brochure

Altair HyperWorks is the most comprehensive, open architecture CAE simulation platform in the industry, offering the best technologies to design and optimize high performance, weight efficient and innovative products.


Optistruct Lessons Learned from a Cambered Structure with Welds made Post-Decambering using Modchg

Problem Description - A pre-cambered trailer is loaded to nearly flat under 1g down by a permanent payload (large steel transformer oil reservoir box). - As the payload is loaded, the trailer is 'de-cambered." They payload is then welded in place to the trailer. - Other operational load cases are applied as the subsequent load cases to the de-cambering load. Topology optimization is conducted with responses from both de-cambering load case and subsequent load cases. - All subsequent analysis must take into account the de-cambering held in place by the welds. The de-camber is a "large displacement" formulation and the loading happens via sliding contact with the payload box.

Tips & Tricks

HyperWorks for Aerospace Applications v13

The HyperWorks for Aerospace self paced course covers the critical processes used in the creation of FEA models in the Aerospace industry. This course contains 12 modules covering aspects from model setup to post processing. Each module contains background information on the tools used and practical exercises with recorded demonstrations to help you get familiar with the tools and processes. Note: This course requires a Connect login to view.


AVL Fire - CFD for IC Engine Development

Introducing Fire M - The easy way to efficient CFD


Magneto-Vibro-Acoustic Efficient Design of PWM-Fed Induction Machines

Induction motors are widely used in the automotive industry. In order to increase the passenger’s comfort, motor designers try to develop new solutions to reduce the noise at its origin, on the electromagnetic side. Damper winding can be a solution to improve emitted vibration and noise. In this presentation, LSEE shows interesting modelling method to evaluate the impact of damper windings on the vibro-acoustic behavior of the motor considering PWM, and compares it with measurements. * Please note this technology is patented / WO 2016207166 A1* An LSEE & Altair presentation at SIA-CTTM Automotive NVH Comfort 2018


Sharda Motors – Usage of Altair CAE Solution for Durability Analysis

Sharda Motor Industries Limited (SMIL) is the market leader in the country in the manufacturing of exhaust systems, catalytic converters, independent suspension systems, seat frames, seat covers (two and four wheelers), soft top canopies, and stamped part for white goods products. Their state-of-the-art manufacturing facilities help them to continuously focus on new products, innovation, technology upgradation, and research & development. The facility seamlessly caters to various emission norms ranging from BS4, BS6, and Tier 4.

Customer Stories

Lushan Primary School

Tucked away in a remote location in the mountains, designed by ZHA, the Lushan primary school, when complete, will be an educational institute located 160 kilometers North-West of Nanchang, the capital of China’s Jiangxi province.

Customer Stories

S-Life FKM: Quick Start Example "3 Loads Applied to a Flang"

The following example only shows a quick overview of the S-Life FKM workflow.

ICAT Meets Automotive Safety and Regulatory Requirements with Altair Simulation Software

ICAT is one of the leading centres for testing, R&D, design, development and validation in support of a Government of India funded initiative to develop facilities for automotive testing & development. To meet the challenges of the automotive industry, they need to employ optimization to decrease vehicle weight while maintaining proper strength. For a major challenge for the rollover testing for bus industry, they used Altair Radioss for roll over simulation and Altair OptiStruct for optimization leading to shortened development time for their customers by over 50%.

Video Testimonials

Providing Designers Easy Access to Powerful Simulation Tools

Brompton Bicycle discuss the benefits they have seen from moving away from simulation in their CAD system to a more powerful and flexible system from Altair.

Customer Testimonials

SOGECLAIR aerospace

SOGECLAIR aerospace, part of the SOGECLAIR S.A. group, is a major engineering partner and prime contractor for the aerospace industry. For the design of an aircraft access door, to leverage the full potential of the combined methods of additive manufacturing and casting, SOGECLAIR used the Altair HyperWorks software suite for the design and optimization of the door.

Customer Stories, Customer Testimonials

Composites Driving Innovation: Development of a Sit-Ski as an Advanced Technology Demonstrator

The National Composites Centre (NCC), in collaboration with the Manufacturing Technology Centre (MTC), Advanced Manufacturing Research Centre (AMRC) and University of Warwick (WMG) worked on a collaborative project to develop a Cross-Catapult technology demonstrator; the Mono-Ski or Sit-ski, a device for sports that uses adaptive equipment on mountain slopes, designed for individuals with lower extremity limitations. Composites were used extensively in the new Sit-ski design with the Altair HyperWorks™ suite being utilized throughout the development process.

Customer Stories

Optimization of Spacecraft Metallic Primary Structure with OptiStruct

Spacecraft primary structure is designed to react all the major loads imparted on a spacecraft. Inadequately designed or tested primary structure can result in structure failure during launch and endanger mission success. To maximize the useful payload to orbit, primary structures are typically designed to minimize mass while maximizing strength and stiffness characteristics. Identifying an optimal balance of these three design characteristics can be challenging due to the extensive number of load cases applicable to the primary structure. For this study, multiple finite element models (FEM) are optimized to define a metallic panel capable of reacting launch loads and supporting a large secondary payload mounted to the panel. To react the launch loads, the panel strength margins are evaluated and the secondary payload’s 1st bending mode is maximized to reduce dynamic coupling with the launch vehicle dynamic environment. For the optimization, the mass is constrained to not exceed an available mass budget. The primary structure panel is connected to a generic spacecraft bus representative of a typical Northrop Grumman satellite. Presentation recorded in Troy, MI during ATCx OptiStruct 2018 on September 27, 2018.

ATC Presentations

Single Model Multi-Attribute Analysis & Optimization

On September 27th, OptiStruct users presented the latest capabilities and advancements in simulation-driven design methods for noise and vibration, durability and fatigue solutions. In addition, Altair experts showcased the unique OptiStruct development workflow which allows a baseline model to be analyzed and optimized for various criteria within one solver, in one format, with just one license. Presentation recorded in Troy, MI during ATCx OptiStruct 2018 on September 27th, 2018.


Durability Workshop

On September 27th, OptiStruct users presented the latest capabilities and advancements in simulation-driven design methods for noise and vibration, durability and fatigue solutions. In addition, Altair experts showcased the unique OptiStruct development workflow which allows a baseline model to be analyzed and optimized for various criteria within one solver, in one format, with just one license. Presentation recorded in Troy, MI during ATCx OptiStruct 2018 on September 27th, 2018.

ATC Presentations


Mabe is a Mexico-based international appliance company designing, producing and distributing a wide spectrum of home appliances such as washing machines, dryers, cooking ranges, refrigerators, air-conditioners, microwaves, etc. Altair technology has enabled Mabe to increase the capacity of their washing machines by 35%, and the spin speed by 24% while reducing the cost per cubic foot by 10%.

Customer Stories

Optimisation of a Collapsible Economic Container “COLLAPSECON"

At the forefront of innovation at CEC Systems is the world’s first semi-automated Collapsible-Economic-Container. Achieving a 4:1 ratio, COLLAPSECON® enables 4 empty containers to be collapsed and combined to form a single container, improving operational efficiency, enhancing return on investment and reducing the impact on the environment. For the design for mass production and optimal operational use, the Altair HyperWorks Suite was leveraged to find solutions for weight reduction without increasing manufacturing costs. The newly engineered container is potentially 30% lighter than the original design, whilst reducing material requirements, increasing manufacturing efficiency, and reducing cost.

Customer Stories

Museum of the 20th Century

For a competition launched for the Museum of the 20th Century, Zaha Hadid Architects re-invented a similarly radical approach by applying new advances in technology to generate structural and architectural expression. With Altair’s assistance, they created a plug-in for their design tool, enabling topology optimization. Altair HyperMesh was used for finite element preprocessing mesh generation, with Altair HyperView providing post-processing and visualization solutions. Structural analysis solver Altair OptiStruct provided advanced analysis and optimization algorithms.

Customer Stories

Novum: University of Michigan Participates in Solar Car Challenges Around the World

See how Altair's Software is used to get University of Michigan's solar car, Novum, to the next level to compete in the World Solar Challenge in Australia and the American Solar Challenge - crossing an entire continent in both cases just on the power of the sun alone.

Customer Stories, Video Testimonials

Improving Composite Design and Simulation Efficiency with Multiscale Designer

Dr. Jan-Philipp Fuhr - Managing Partner, Cikoni talks about developing a methodology to analyze and predict composite matrix and fiber failure using Altair OptiStruct and Multiscale Designer resulting in improved accuracy and simulation efficiency of their simulations.

Customer Stories, Video Testimonials

SimLab for CFD and Multiphysics Webinar

This webinar shows Altair's streamlined thermal fluid-structure interaction workflow for powertrain components. Leveraging Altair's CFD and structural analysis solvers, SimLab now offers a streamlined workflow that enables pre-, solver, and post-processing for thermal FSI within a single interface. The webinar will cover extraction of fluid surfaces to build CFD domains from solid bodies, defining loads and constraints, solver setting for conjugate heat transfer (CHT) and computing deflections and thermal stresses and post-processing structural and thermal-flow results.


Design Lightweight and Efficient Stamping Dies with Topology Optmization

Ford Otosan in Turkey designs big stamping dies with the help of topology optimization using OptiStruct. Weight savings of 20% were possible on their first attempt to try optimization on a new stamping part.

Video Testimonials

Non-Linear Optimization of Suspension Link for Optimal Performance using Altair’s OptiStruct and HyperWorks

In recent times there is a high demand for lightweight automotive components which will reduce oil consumption and emissions. The components that are under non-linear load conditions would need optimization techniques that would yield a design which satisfies all performance targets and at the same time maintains the process efficiency with respect to time and cost. The use of CAE tools such as Altair’s OptiStruct and HyperWorks allows engineers to explore various design solutions starting from concept level to matured design that meets multiple requirements simultaneously with due consideration of manufacturing methods that allows engineers to arrive at an optimal design and process.

Technical Papers

Testing Aerial Ladders in FEA: Wind Load Standard Equation vs CFD Wind Tunnel Analysis

To design and build an aerial ladder for a firetruck, the engineer needs to accurately determine the working loads the ladder will encounter. Some of these can be easy to interpret such as the weight of the firefighter in the basket at the end of the ladder, or the weight of the water being supplied to the nozzle. Other loads can be a little harder to quantify, such as how wind affects the ladder. There are several different ways to determine this effect, and two of those will be explored in this paper: the standard equation (ASCE 7-10), and CFD.

Technical Papers

Multiphysics Design Optimization Using an Adjoint Sensitivity Analysis

Optimal design methods involving the coupling of fluid and structural solutions are a topic of active research; particularly for aerospace applications. The paper presents a coupled fluid and structure approach to topology optimization using two commercial finite element solutions; AcuSolve and OptiStruct. A gradient based method is used to minimize the compliance of a structure subject to thermal loading. The optimal material distribution to minimize compliance is computed using the Solid-Isotropic Material with Penalty (SIMP) method available in OptiStruct. A volume fraction constraint is imposed in order to iteratively reduce the parts mass. Draw constraints are used to ensure manufacturability. The thermal loading is computed iteratively using a computational fluid dynamics (CFD) solution from AcuSolve. The optimization produces an innovative design which increases the heat rejection rate of the part while reducing the mass.

Technical Papers

Random Vibration Procedure and Best Practices

In order to evaluate if a design is robust and meets design margins, engineers use a variety of analytical tools. Often a product’s duty cycle is not perfectly characterized but the statistics of a lifetime of excitation are known. These excitations can cause fatigue when system level dynamics are excited. It is very important to understand how a system responds to these excitations and how natural frequencies interact with each other. Power spectral density (PSD) analysis, more commonly known as random response analysis, is used to determine stresses and strains in a system that is subjected to random excitations.


Fast contact method for speeding up solving finite element problems involving non-linear contact behavior

For large aerospace assemblies in finite element (FE) analysis problems, contact interaction between the surrounding bodies has to be established to simulate the load transferred between the components, like aircraft engine carrying bracket assemblies, spigots assemblies etc., and understand the effects of interaction between respective parts. In some cases, depending upon geometry of the assembly, the region of study may not be contact area but the stresses acting within the parts themselves. If there is no geometric or material non-linearity in such problems, a new contact formulation method known as Fast Contact can be used in these contact regions.

Technical Papers

Design Optimization for Additive Manufacturing in OptiStruct with consideration of Overhang Angle in Topology Optimization

This paper gives a technical review and guidelines for positioning the current capabilities. Note that the following uses OptiStruct version v2018. There have been some changes to the discussed algorithms compared to previous versions. Generally, version 2017.2.3 can be used to reproduce all the presented results.

Technical Papers

Snap-Fit Optimization for Achieving Desired Insertion and Retention Forces

Snap-fits are ubiquitous engineering features used to quickly and inexpensively assemble plastic parts. The geometric, material, and contact nonlinearities associated with snap-fit problems can present modeling challenges. Quasi-static solutions with explicit solvers are commonly used to analyze snapfits; however, OptiStruct’s nonlinear solver now possess the ability to solve these highly nonlinear problems implicitly. The first part of this study discusses an effective approach to using OptiStruct for the implicit finite element analysis of snap-fits. Once an accurate simulation model has been created, engineers typically make design changes in order to achieve desired insertion and retention forces. The second part of this study details how HyperMesh morphing and HyperStudy can be used to optimize the snap-fit design, resulting in desired insertion and retention forces while minimizing mass and ensuring structural integrity. The approach documented in this report can reduce the design time, material use, and failure rate of snap-fits used in industry.

Technical Papers

Designing Optimized Aluminum Castings with Fatigue Life Considerations

Andras Tanos, R&D Engineer at FemAlk ZRT, talks about how they have used Altair solutions for topology optimization of an engine part.

Video Testimonials, Videos

Innovative Use of Composites for Organic Architecture

In this interview recorded at JEC World 2018, Atanas Zhelev, Chief Architect and co-founder at Digital Architects Ltd., talks about the innovative use of composites for organic architecture. Composites offer designers the ability to create a material and engineer its properties to resist particular load cases and environments. Such infinite possibilities can be daunting and a big step away from the more conventional way of working with a material having a known set of characteristics. It is here that architects and structural engineers can be aided by Altair’s software, such as ESAComp, now available as a standalone product in Altair HyperWorks advanced simulation and optimization software suite, to produce efficient, stable and durable composite structures.

Video Testimonials, Videos

Be the first to know

Subscribe to our newsletter to learn about product training, news, events, and more!