simlab

Improving Comfort and Robustness of Jabra Headsets with Simulation-driven Design, by GN Audio

The usability of a headset is largely determined by a comfortable fit and its resistance to everyday use. Learn from Alice Lin, Manager of Mechanics at GN Audio R&D how she introduced FEM simulation capabilities at Jabra. The presentation shows how product design benefits from structural analysis, design for comfort, and drop test simulation. A future extension of simulation capabilities intends to address more areas and improve the simulation-driven design process efficiency.

Future.Industry 2021

Bringing the Future Faster Through Innovation and Analysis, by American Axle & Manufacturing (AAM)

AAM has been providing mechanical drivelines to automotive customers for more than 25 years. As the automobile transitions to electrification, so too must the driveline. AAM has developed a suite of innovative, lightweight, compact and cost-optimized electric drive units and electric beam axles to meet the growing global technology demand as electric vehicles continue to expand over the next decade. Engineering simulation, optimization and validation tools were significant enablers to increase the validation confidence and reduce the time to market for these new products.

Future.Industry 2021

CFD Simulation - Not Just for Experts

An intuitive and robust CFD workflow is available in Altair® SimLab® - a process-oriented, feature-based finite element analysis software that allows you to quickly and accurately simulate the engineering behavior of complex assemblies. For fluid and thermal analyses, SimLab can make the model setup process even faster, repeatable, thereby minimizing tedious manual steps that can be automated. A live demo will be performed using real-world models to show the simple and smooth analysis process in Altair SimLab that goes from CAD to results in minutes.

Future.Industry 2021

Topology Optimization Considering Fluid Flows

For the past three decades, Altair’s optimization solutions have driven the innovative, lightweight, and structurally efficient designs of many products you see and use every day. The intense focus on additive manufacturing in recent years have given a boost to topology optimization and generative design, providing more freedom to explore alternatives. Today, we keep on innovating the technology, looking at including multiple physics, like thermal, electromagnetics, and fluid flow to drive design. Altair AcuSolve – coupled with Altair Optistruct – enables engineers to find the optimum shape by simply defining inlets, outlets, and the allowable space in which the solver can work. AcuSolve’s gradient-based topology optimization method will quickly and efficiently find the path of least resistance to deliver fluid flows with minimal effort.

Future.Industry 2021

Overcoming the Thermal Challenges of Electronic Devices

To design today’s tightly packaged electronic systems it is essential to create a thermal analysis model of the PCB within its enclosure. Learn how Altair SimLab provides robust and repeatable workflows for fast, accurate, and consistent analysis, even for occasional users allowing them to confidently identify and correct potential design issues earlier in development with accurate thermal analysis that doesn’t require advanced CFD knowledge.

Future.Industry 2021

Design Finalization using Multiphysics Simulations with Altair SimLab

The increasing complexity of machines requires active management and evaluation of potential product failures and simulation of physically accurate conditions during development. Achieved through multiphysics simulation, Altair SimLab can simulate a wide range of interacting physical models including fluid-structure interaction (FSI) and thermomechanical simulation. By helping with complex design problems, simplified modeling workflows give a deeper understanding of phenomena and root causes of unwanted behavior.

Future.Industry 2021

Altair® SimLab®: CFD - Not Just for Experts

The objective of this webinar is to present an intuitive and robust CFD workflow available in Altair® SimLab® and to expose the features that can make model setup process even faster, thereby minimizing/avoiding any manual or repeatable steps. A live demo will be performed using real world models to show the simple and smooth model setup process in Altair® SimLab® that goes from CAD to results.

Webinars

Altair® SimLab®: Multiple Physics Platform

As products become more and more complicated, the coupling of multiple physics is becoming more the need in product design cycles. A product engineer is many at times required to not just do a structural analysis, but also, thermal or CFD or at times even electromagnetic analysis. This webinar will show how Altair® SimLab® provides a robust platform for performing multi-physics analysis, and how the workflows allow for the coupling of complex geometry and physics with ease.

Webinars

Overcoming the Thermal Challenges of Electronic Devices

To design today’s tightly packaged electronic systems it is essential to create a thermal analysis model of the PCB within its enclosure. Learn how Altair SimLab provides robust and repeatable workflows for fast, accurate, and consistent analysis, even for occasional users allowing them to confidently identify and correct potential design issues earlier in development with accurate thermal analysis that doesn’t require advanced CFD knowledge.

Webinars

Altair SimLab (General) Structures Basic

The focus of the webinar is to present an intuitive and robust workflow available in Altair® SimLab® for product engineers and analysts to perform linear and non-linear analysis with ease. The webinar will focus on the capabilities of Simlab in setting up and analyzing real world problems in an integrated environment that allows for quick model setup, while also enabling accurate meshing approaches and techniques.

Webinars

Altair for Electronic System Design (ESD)

Electronic system design (ESD) is having a greater influence on almost every type of product requiring new simulation tools to help achieve electronic, electrical, mechanical, thermal, and connectivity goals. Altair’s simulation-driven design tools enable your team of specialized engineers to collaborate across all aspects of printed circuit board development from concept to manufacturing. Our products streamline your process, eliminate design iterations, and reduce time-to-market.

Brochures

Manufacturing Process Simulation The Right Model for the Right Decission at the Right Time

Brett Chouinard, President and COO of Altair discusses Development challenges in Industrial machinery and illustrates how Altair's scalable simulation solutions provide the environment for simulation-driven innovation and how machine learning expands the capabilities furter.

ATCx Industrial Machinery 2021

Faster evaluation of real-world machines - Accurate structural assessment with real loading conditions

Felix Koerfer, Technical Consultant at Altair, gives a Demo Sessions on Altair Simulation Solutions for faster evaluation of real-world machines, explaining how accurate structural assessment with real loading conditions allows assessment of global stress and deformations, evaluation of bolt forces, and how accuracy & deformation of linear bearings cna be achieved.

ATCx Industrial Machinery 2021

The Culmination of 30 Years' Investment in Productivity Tools

Altair CTO James Dagg presents an overview of the journey Altair took to develop the leading modeling and visualization technologies we have today, and provides a look at what’s coming next to help you reduce your product delivery time. James Dagg has been at Altair for more than 30 years and is a visionary behind Altair’s software strategy and development activities. He has also led the development of Altair’s concept design technologies and oversaw the development of Altair’s CAE software suite for more than a decade.

Conference Presentations

From CAD to Complex Assembly Analysis in Minutes with Altair SimLab

Stephen White, Technical Support Manager, introduces Altair SimLab, a process-oriented, feature-based finite element modeling software that allows you to quickly and accurately simulate behaviour of complex assemblies. SimLab covers multiple physics including structural, thermal and fluid dynamics which can be easily setup and automated, helping to drastically reduce the time you spend creating finite element models and interpreting results.

Conference Presentations

Accelerating Crankshaft Modeling with Automation at BMW Motorrad

BMW Motorrad is the motorcycle division of BMW, a German multinational company manufacturing luxury automobiles and motorcycles. With the first motorcycle manufactured in 1923, their current product line includes a variety of shaft, chain, and belt-driven models designed for off-road, dual-purpose, and sports powered by a variety of engines ranging from a single cylinder, various two cylinder (parallel twin, flat twin, boxer etc.), four cylinders inline and six-cylinder inline ones. BMW Motorrad faced a challenge with their model build processes, needing to move previously outsourced crankshaft modeling work in-house while also reducing lead time. Through a semi-automated modeling process based on Altair SimLab, BMW Motorrad developed scripts which reduced FE model generation time down 80%, from 2 weeks of manual work to just half a day. Ruediger Ott, HyperWorks Business Development at Altair, presents a use case from BMW Motorcycles who found that they could significantly reduce the model build time of their powertrain assemblies with SimLab, making use of the automation capabilities to minimize manually effort and refinement.

Conference Presentations

Guide to Electronic System Development

Manufacturers today are tasked with designing smart, connected products at a breakneck pace to stay ahead of the competition. As performance demands continually increase, packaging sizes become smaller, and device connectivity becomes more critical, schematic engineers and product designers need ways to make efficient design decisions and collaborate with one another to optimize complex interconnected mechanical and electromagnetic systems. To develop the next generation of smart products, organizations are turning simulation to improve device performance and drive profitability.

eGuide

Sound and Simulation: Designing a Smart Speaker

Speaker design and analysis, especially for a more complex product, system, or component, often requires building multiple simulation models. The loudspeaker development process involves multi-physics and multiple sources in parallel, to multiple simulation runs for prototyping, testing, and validation. This results in separate models for nonlinear analysis of strength, thermal analysis and stiffness, noise, vibration, and acoustics. Even though each model isn’t always built from scratch, typically the use of different solvers for each attribute will require that models need to be converted from one solver format to another. This practice is not only time consuming but frequently error prone resulting in an inefficient use of engineering time.

Technical Document

Guide to Injection Molding

Nowadays to remain competitive, the need to constantly improve injection molding processes can benefit from modern technological advancements that simulation offers to overcome known disadvantages.

eGuide

Explore Design Options and Streamline Manufacturability Using Altair Manufacturing Platform

Designing consumer electronics for mass production requires a team of experts focusing on various aspects of design and manufacturing process. With a fragmented engineering process, exchange of models and information can cost valuable time in a competitive landscape. This webinar presents Altair’s unique Simulation Driven Design platform will shorten your design cycle, time which is pivotal to a company’s success.

Webinars

Enhance Electronics Product Design Using Altair Multiphysics Solvers

Consumer Electronics products are getting more complex every day. This often requires more physics to be addressed during the design phase, while the development cycles are getting shorter. This webinar presents Altair’s workflow to enable simulation of structural, thermal, acoustics and fatigue properties in an integrated Multiphysics environment.

Webinars

Connect designer with CAE expert - efficient collaboration, true consistent environment

Altair Expert CAE platform includes high end CAE tools for CAE experts to any simulation, computational fluid dynamics (CFD), finite element analysis (FEA) or electromagnetics are only a few examples which needs your business might have. In this webinar, you learnt how Altair linked the two different worlds of designers and CAE specialists in a smart way within the same intuitive easy GUI on the same database. Both worlds can work on the same database with no need to do work twice or lose information in the development process.

Webinars

Accelerate Electronics Design Modeling Using Altair Multiphysics Platform

As high-tech electronics companies adopt Multiphysics solutions, they may introduce new complexity in the development process coupling multiple tools. Model setup, remeshing, and design modification offer no additional value and increase the product lead time. This webinar presents Altair’s single model multi electronics system in an integrated Multiphysics environment.

Webinars

Using Altair Software for Structures

Altair offers industry-leading engineering analysis and optimization tools from simulation-driven design concepts to detailed virtual product validation, and simplified modeling workflows to advanced high-fidelity model building. Whether big or small, our customers trust their decision making to Altair, the pioneer of simulation-driven design.

Learn more at altair.com/structures.

Use Cases

Using Altair Software for Electromagnetics

Altair software is used across industries to solve a broad range of electromagnetic problems from static to low and high frequencies. Whether your application requires multiple frequency and time-domain techniques with true hybridization to enable the efficient exploration of a broad spectrum of electromagnetic performance, other the simulation of magneto static, steady-state and transient conditions, we have the tools you need.

Learn more at altair.com/electromagnetics.

Use Cases

Using Altair Software for Multiphysics

Altair provides an industry-leading portfolio of multiphysics-enabled software to simulate a wide range of interacting physical models including fluid-structure interaction, flexible bodies, aeroacoustics, and thermomechanical simulation. Together with Altair’s multidisciplinary optimization and scalable high-performance computing you can solve real world engineering problems quickly and effectively.

Learn more at altair.com/multiphysics.

Use Cases

Altair SimLab Real World Multiphysics Solutions

More and more engineers need to solve problems that can span multiple physics including structural, thermal, electromagnetics, and fluid dynamics.

Conference Presentations

Optimization-enabled Structural and Multiphysics Analysis

Simulation-driven design powered by topology optimization was created by OptiStruct over two decades ago. Its success has changed the CAE/CAD industry as today all vendors have embraced this trend.

Conference Presentations

Altair SimLab - Transient Magnetic Solution Setup

Altair SimLab is a process-oriented multidisciplinary simulation environment. It includes a complete solution for electric motor modeling, coupled with Altair Flux.

Use Cases

Altair SimLab - TFSI Analysis of a Heat Exchanger

Altair SimLab is a process-oriented multidisciplinary simulation environment. It includes a complete solution for fluid and thermal analysis of complex assemblies, like the TFSI analysis of a heat exchanger.

Use Cases

Enhancing Product Design for Medical Devices

Medical devices of all kinds must be designed to withstand the structural and operational requirements associated with normal use, drop, and misuse, all while balancing weight and cost considerations. This webinar presents Altair’s workflow to enable simulation of structural, thermal, and fluid properties coupled with electromagnetics, and mechatronics in an integrated Multiphysics environment.

Webinars

Altair SimLab - Process Automation for Powertrain

Altair SimLab is a complete solution for powertrain modeling and analysis. The highly automated, process-driven workflow shown in this video illustrate how to go from CAD to analysis of a connecting rod in minutes.

Use Cases

Altair SimLab - Replace a Single Component in a Large Assembly

Altair SimLab is a complete solution for powertrain modeling and analysis. In this video, we demonstrate how to quickly replace a single component - a new housing - in a large assembly.

Use Cases

Altair SimLab - Solid Welds

Solid welds can be quickly and automatically created in Altair SimLab, therefore enhancing the accuracy of the simulation model reproducing the physical behavior of a part or assembly.

Use Cases

Altair SimLab - Fatigue Optimization

The latest release of Altair SimLab includes an automated workflow to setup a topology optimization study on components withstanding fatigue loads. The solution leverages Altair OptiStruct's capabilities and enables to setup, run and analysis the optimization results all within SimLab.

Use Cases

BOTTPOWER Designs Lightweight Bracket for Motorbike

BOTT stands for “Battle of the Twins,” a racing category for motorbikes with two-cylinder four stroke engines. Bottpower is a Spanish motorsport engineering company located in Valencia. They specialize in designing and building custom motorbikes for racing and street use. They design and build parts, systems, and prototypes for other companies. A project challenge at Bottpower was to design a lightweight stay bracket for their motorbike that could withstand the main and aerodynamic loads. The goal was finding the optimal weight and stiffness ratio to reduce weight while ensuring safety measures. All of this had to be done quickly in order to arrive on time at Addit3D, Spain's most important 3D-print fair, to showcase the bike. The optimal design for aerodynamic loads was found using Altair software.

Customer Stories

Altair for Multiphysics Applications

Altair provides an industry-leading portfolio of multiphysics-enabled software to simulate a wide range of interacting physical models including fluid-structure interaction (FSI), flexible bodies, aeroacoustics, and thermomechanical simulation.

Brochures

Altair for Structures Applications

Altair offers industry-leading engineering analysis and optimization tools from simulation-driven design concepts to detailed virtual product validation, and simplified modeling workflows to advanced high-fidelity model building.

Brochures

Injection Molding Simulation Using Altair Molding Solutions

Injection Molding Simulation Using Altair Molding Solutions

Webinars

Altair SimLab - Unit System

#1416 Tips and Tricks SimLab 2019.3 version introduces unit system which will allow users to work in a unit system they desire. The introduction of unit system should not disrupt current users from what they are currently used to. The following rules apply for this version.

Tips & Tricks

Altair SimLab - Quick Drop Test Setup

#1417 Tips and Tricks Quick setup - Drop impact test parameters: It will automatically create boundary conditions based on user inputs and user can modify if needed. • Initial velocity will be created based on height, drop direction and gravity. • Rigid wall creation based on direction of impact. • Output request and settings based on solution time after impact.

Tips & Tricks

Automation of Model Build Process using SimLab

Automation of model build process using SimLab

Webinars

Training: Complex Feature Based Meshing of Solids With SimLab

This session deals on how to simplify the modelling process of complex geometries using SimLab automated meshing. This course would include SimLab capabilities of meshing and how to standardize the workflow of meshing complex geomentries using repeatable mesh templates.

Webinars

Altair SimLab – CAD Shared Faces

Tips and Tricks This tool will help to show the shared faces in connected CAD body. This feature is supported only for Parasolid model imported with “Save geometry in database”.

Tips & Tricks

Altair SimLab – Proximity Mesh Control

Proximity: Automatic mesh refinement will happen on surfaces that are within proximity distance. This will be useful in CFD, Electronics applications etc.

Tips & Tricks

Altair SimLab – Extract Cavity

Extract cavity option to extract the cavity from the selected bodies by defining the node. To capture the fluid geometry better, turn on ‘Preserve all feature lines’ in Advanced options. It would be useful in CFD to extract the fluid domain.

Tips & Tricks

Attaining Nonlinear and Multiphysics Mastery for SMBs with SimLab and OptiStruct

A growing number of companies aspire to perform multiphysics, but each added analysis tool introduces new complexity to a development process. Model translation, remeshing, design modification – these tasks offer no added value and increase the likelihood of error. Altair SimLab enables users to model and solve multiple physics, including nonlinear analysis, within one unified platform. Each analysis runs from one master model, allowing you to spend less time prepping and more time solving. Join the webinar to see these powerful workflows in action. In this webinar, we will demo the design of a smart speaker with an emphasis on nonlinear analysis, multiphysics, and improving perceived sound with vibro-acoustic simulation.

Webinars

Electric Motors Multidisciplinary Optimization Platform

The design of a high-performance e-Motor is a complex undertaking. Engineers have conflicting constraints to consider including efficiency, temperature, weight, size and cost. To explore more ideas, better understand their designs and improve performance, Altair HyperWorks™ has a workflow to guide motor designers through an efficient process of Simulation-Driven Design. This analysis and optimization solution supports multi-disciplinary teamwork and reduces design times.

Use Cases