Magneto Vibro Acoustic Design of PWM Fed Induction Machines

Induction Motors (IM) are widely used in various industries. To ensure their speed control, IM will be supplied with pulse width modulation (PWM). This kind of supply, can impact efficiency of the motor and degrade its vibro-acoustic behavior, generating noise nuisance. To tackle these technical challenges and ensure best-in class acoustic comfort for users, it is necessary to design a quiet e-motors at the early stage of design.
The first aim of this paper is to show a new method to reduce noise and vibration due to PWM supply of induction machine. The proposed approach allows the passive reduction of air-gap flux density harmonics in an induction machine. The second interest, is to show a new method to analyze the vibro-acoustic behavior of a PWM-fed IM. The method is fully finite element (FE) computation. Finally, the third interest of this article, is to compare noise and vibration results between the proposed FE method, magneto-vibro-acoustic coupling and measurements. Good agreement between measurements and computation will be shown.
Have a Question? If you need assistance beyond what is provided above, please contact us.

Be the first to know

Subscribe to our newsletter to learn about product training, news, events, and more!