< Back to Search Results

Multiphysics Design Optimization Using an Adjoint Sensitivity Analysis

Multiphysics Design Optimization Using an Adjoint Sensitivity Analysis

Download PDF

Optimal design methods involving the coupling of fluid and structural solutions are a topic of active research; particularly for aerospace applications. The paper presents a coupled fluid and structure approach to topology optimization using two commercial finite element solutions; AcuSolve and OptiStruct. A gradient based method is used to minimize the compliance of a structure subject to thermal loading. The optimal material distribution to minimize compliance is computed using the Solid-Isotropic Material with Penalty (SIMP) method available in OptiStruct. A volume fraction constraint is imposed in order to iteratively reduce the parts mass. Draw constraints are used to ensure manufacturability. The thermal loading is computed iteratively using a computational fluid dynamics (CFD) solution from AcuSolve. The optimization produces an innovative design which increases the heat rejection rate of the part while reducing the mass.

Have a Question? If you need assistance beyond what is provided above, please contact us.